5 HOMEOPATHY AND SYSTEMATICS

Vilma Bharatan & Chris Humphries

Department of Botany, The Natural History Museum, Cromwell Road, London SW7 5BD

Abstract: Homeopathy has never been subjected to systematic analysis. A survey of the various Materiae Medicae shows that over 800 species of plants, 150 species of animals, and 500 chemicals (including elements) are the sources of remedies in homeopathy. As remedies are considered related with respect to their therapeutic actions for treating similar symptoms, the aim has been to classify and map plant remedies using a newly defined concept of homology. The results will be compared with cladograms based on different data sets (e.g. morphological characters and DNA sequences) to test whether a similar phylogenetic pattern exists among the plant remedies. By classifying the symptoms and establishing their relationships genuine homologies can be distinguished from homoplastic symptoms. By creating an underlying systematic structure to the homeopathic plant database it should become possible to predict novel remedies systematically.

THE INFLUENCE OF FIRE ON THE COMMUNITY STRUCTURE OF DUNG BEETLES IN THE IVORY COAST

Dorothy Newman1,2,3, Frank-T. Krell1, Paul Ngoran5,6, Célestin Kouakou5,6

1Soil Biodiversity Programme, The Natural History Museum, London, U.K., 2Department of Agriculture, The University of Reading, U.K., 3Zoological Research Institute and Museum Alexander Koenig, Bonn, Germany, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire, Université d'Abobo-Adjamé, Protection des Végétaux et de l'Environnement, Abidjan, Côte d'Ivoire.

Abstract: In Côte d'Ivoire, West Africa, we compared dung beetle assemblages in forest and savanna habitats with different fire regimes. In May 2001 we exposed samples of 1 kg of fresh cow dung in three areas of the forest, a yam field (burned immediately before experiment), a coffee plantation (burned 1984) and in secondary forest (burned over fifty years ago). Using the same method in January 2002 we also studied the differences between burned (immediately before experiment), unburned (burned January 2001), and cut (burned January 2001, with vegetation cleared) savanna sites to determine the influence of annual bush fires. Clear differences in abundance and guild structure were seen between the dung beetle assemblages on all sites in both experiments. The abundance of beetles in both experiments was lowest in the least disturbed habitats (secondary forest and unburned savanna respectively), and highest in the sites with intermediate disturbance (coffee plantation and cut savanna). Those sites with the highest disturbance (yam field and burned savanna) showed higher numbers of telecoprds, and lower numbers of paracoprids than the intermediately disturbed sites. This is possibly due to the telecoprds (being competitively superior) assuming a more dominant role in the assemblage in disturbed areas because of their reliance on high dung temperatures which occur where there is less vegetation.
ABSTRACT BOOKLET

The First Annual Student Poster Display

by

PhD Students

at

The Natural History Museum

London

Friday 19th July 2002

Flett Lecture Theatre

NHM