Museum Blog

Saturn’s Moon Enceladus and its Paper-Thin Crust

Posted 7/12/2016 12:07 AM by Kim Evans | Comments

European Space Agency Press Release

Enceladus - large.jpg

This picture of Enceladus has been created using data taken by the NASA/ESA/ASI Cassini spacecraft’s high-resolution camera. The ice crust thickness, indicated by the color, has then been plotted over the moon’s surface. According to the model, the thickness varies between about 35 kilometers (22 miles) in the cratered equatorial regions (yellow) to less than 5 kilometers (3 miles) in the active south polar terrain (blue). Image credit: LPG-CNRS-U. Nantes/Charles U., Prague.

Of all the icy moons in the solar system, Saturn’s moon Enceladus is probably the ‘hottest’ when measured for its potential to host life. Despite its distance from Earth, it may also be the easiest to investigate.

Buried beneath its icy crust is a global ocean of water, much like the one scientists are convinced lies inside Jupiter’s moon Europa. The question is how to get below what is probably tens of kilometers of ice to see if there is life in the water.

Although this is the problem at Europa, at Enceladus the moon does some of the work for you. At its south poles, huge geysers of water jet into space. These come from the ocean depths and suggest that the ice there must be relatively thin for this to happen. But how thin? Planetary scientists may now have an answer.

The international Cassini spacecraft has been paying particular attention to Enceladus since arriving at Saturn in 2004. Indeed, it was Cassini that discovered the geysers on Enceladus in the first place. Now there are more than 100 individual jets known on the moon, each spewing water into space.

A team of independent researchers have now taken all of the data about Enceladus collected by the spacecraft and built a computer simulation of the moon that includes the thickness of the ice crust.

The picture of Enceladus above has been created using data taken by Cassini’s high-resolution camera. The ice crust thickness, indicated by the color, has then been plotted over the moon’s surface. According to the model, the thickness varies between about 35 kilometers (22 miles) in the cratered equatorial regions (yellow) to less than 5 kilometers (3 miles) in the active south polar terrain (blue).

In astronomical terms, this is paper-thin. The model predicts that the 505 kilometer- (314 mile-) wide moon contains a core that is 360–370 kilometer (224-230 miles) in diameter. The rest is ocean and the ice crust, with the ice crust itself having an average thickness of 18–22 kilometers (11-14 miles).

Remarkably, however, the model predicts that the thickness of the ice reduces to less than 5 kilometers (3 miles) at the south pole. This could make it easier for the water to escape along cracks and fissures.

Last year Cassini flew through the geysers, analyzing the water with its instruments. On previous occasions, the discovery of silica particles, likely originating from Enceladus, and the presence of methane in the water plumes indicated there is hydrothermal activity at the ocean’s floor. This water and the chemicals were then transported from the floor to the base of the ice crust, and subsequently jetted through and out into space.

No one knows how the geysers are powered but showing that the ice crust could be much thinner than previously thought is intriguing.

Source: AstronomyNow.com

 

Comments

Subscribe to our RSS feed

Authors

Categories

Social

Archives

Tags

2015 in Space2017 Solar Eclipse40 Eridani system60 Minutes in SpaceAltitudeAndromedaAntaresanthropologyarchaeologyArctic IceArtAsk a ScientistAsteroidAsteroid 2012 DA14Asteroid sample returnAstronomyAtmospherebeerBeetlesBig BangBinary StarBlack HolesBlood MoonBrown DwarfButterfliesCarnegie Institution for ScienceCassiniCatalystCelestial EventsCentaurus ACeresChandra X-Ray TelescopeChang’e 3 moon missionChang’e 4 moon missionCharonChina Space ProgramChinese Space ProgramChipmunksChristmasCitizen ScienceClimateClimate changecollaborationCollectionscollections moveColoradoCometComet 67PComet 67P/Churyumov–GerasimenkoComet Swift-TuttleConferenceConversations in Local Health ResearchCootiesCosmic InflationCuriosityCuriosity RoverCygnusCygnus SpacecraftDark EnergyDark MatterDatabaseDawnDawn missionDawn SpaecraftDDIGDenverDiscovery MissionsdonationDream ChaserDung BeetlesDwarf PlanetEagle NebulaEarthEarth and MoonEarth from SpaceEarth Observation SatellitesEclipse ViewingEducation and Collections Facilityeducation collectionsEinsteinEl NiñoEnceladusentomologyESAEuclid SpacecraftEuropaEuropean Space AgencyEvolutionExoMarsExoMars SpacecraftExoplanetExoplanet Search TechniquesExoplanetsExtinctionextremophilefieldfieldworkFirst Earthrisefolk artfoodGAIA MissionGalaxiesGalaxyGalaxy ClustersGanymedegem carvingGeneticsGRACE SpacecraftGravitational WavesGravity Recovery and Climate ExperimentGreenhouse GasesHabitable ZoneHolidayHolidayshorticultural pestHot JupitersHubbleHubble Space TelescopeHuman SpaceflightHydrainsect collectioninsectsInsightInternational Space StationISSISS SightingsJason-2 (Spacecraft)JPLJWSTKeplerKepler Missionknow healthKonovalenkoKuiper Belt ObjectLaser CommunicationsLawrence Livermore National LaboratoryLepidoperaLepidopteraLibraryLiceLight PollutionLinear Etalon Imaging Spectral Array (LEISA)literatureLockheed Martin DenverLROLunar EclipseLunar Reconnaissance OrbiterMadagascarMarathon ValleyMars 2020Mars ExplorationMars OrbiterMars Reconnaissance OrbiterMars RoverMars RoversMars Science LabMars Science LaboratoryMars spacecraftMars WaterMAVENMemoryMesa VerdeMeteor ShowersMeteorsMilky WayMongoliaMoon Rise/SetMothsMount SharpMROMSLMurray ButtesNASANASA-JPLNASA-TVNeptuneNeuroscienceNeutron StarNew HorizonsNew Horizons spacecraftNight SkynomenclatureNSFNutritionOcean CurrentsOcean Surface Topography Mission (OSTM)Opportunity RoverOrbital SciencesOriginsOrionOrion spacecraftOSIRIS-RExPaleo DietpaleontologyparasitesPerseidsPersied Meteor ShowerPhilaePhobosPhotographyPlankPlutopoisonPolar bearsProgresspublishingPulsarQuasarRADRadio AstronomyRegolith ExplorerRelativityResource IdentificationRosettaRussiasamplesSaturnSaturn MoonsSaturn Ringsschoolscience on tapScientific visitorSecurityShrewsSierra NevadaSky calendarSky watchSmellSnowmassSolar SystemSoyuzSpace CommunicationsSpace ProbesSpace Stories of 2015Space TelescopesSpaceXspecimensSpectral InterpretationspidersSpitzer Space TelescopeStar ClusterStar TrekstarsStickney craterSunSuomi National Polar-orbiting PartnershipSuper EarthSuper MoonSupernovaTasteTeen Science Scholarsthe MoonTongueTravelturtleUniverseUtopia PlanitiaVenusVery Large ArrayVestaVirgin GalacticVLAvolunteeringVulcanWebb Space TelescopeWeddingwormXMM-NewtonX-ray Multi-Mirror Missionzoology
^ Back to Top
comments powered by Disqus