Museum Blog

Star Trek at 50: Vulcan May Not Be Real, But Spock’s Home System Is

Posted 7/26/2016 12:07 AM by Kim Evans | Comments

40 Eridani A - large.jpg

The green area surrounding 40 Eridani A depicts the habitable zone of the star, the area where temperatures would be right for liquid water, an essential ingredient for life (Vulcan or otherwise). The habitable zone of Vulcan is closer to its dwarf star than the Earth's is to the sun because 40 Eridani A is cooler and dimmer than our sun.

It takes a little imagination to wish some favorite fictional universes into existence. But, for legions of "Star Trek" fans, they don’t have to wish: one star system really exists in our Milky Way galaxy. In Star Trek lore, Vulcan is the home of logic, learning and the deeply beloved first officer Mr. Spock. While Vulcan is fictional, the star system it belongs to–40 Eridani–is very real. It’s located only 16.5 light-years away from Earth and its primary star can be spotted with the naked eye. So how much is science fiction and how much is science fact?

“Could there be an Earth-like planet in this system? We have no way of knowing that now,” said Karl Stapelfeldt, chief scientist of NASA’s Exoplanet Exploration Program. So while Vulcan (as far as we know) doesn’t exist, a fascinating triple sunset would occur on any rocky planet in the system, because 40 Eridani has three stars that circle each other.

The most massive is 40 Eridani A, a dwarf star that is the mythical Vulcan’s sun. The other two are a pair, orbiting each other at a distance from 40 Eridani A. This binary pair contains a red dwarf (40 Eridani C)­ and a white dwarf star (40 Eridani B). From the surface of Vulcan, “they would gleam brilliantly in the Vulcan sky,” according to Rodenberry in his 1991 letter to Sky & Telescope magazine.

If you believe in science fiction, Mr. Spock’s dreamt-up world lives in the habitable zone of the largest star, 40 Eridani A. The habitable zone, shown as the area in blue-green, is the distance from a star where liquid water is said to exist. Too far away from its sun and Vulcan would freeze like Pluto; too close and it would sizzle like Mercury. Vulcan is perched on the inner edge, lending the world its imagined desert-like quality (at least, in a timeline where the planet remains undestroyed).

But if there were a planet like Vulcan in the 40 Eridani system, would we be able to see it? Not yet. “We don’t yet have a way to detect it, but NASA is working on the technology to make it possible,” Stapelfeldt said.

Source: NASA

 

Comments

Subscribe to our RSS feed

Authors

Categories

Social

Archives

Tags

2015 in Space2017 Solar Eclipse40 Eridani system60 Minutes in SpaceAltitudeanatomyAndromedaAntaresanthropologyarchaeologyArctic IceArtAsk a ScientistAsteroidAsteroid 2012 DA14Asteroid sample returnAstronomyAtmospherebeerBeerFWGBeetlesBig BangBinary StarBlack HolesBlood MoonBlue TongueBrown DwarfButterfliesCarnegie Institution for ScienceCassiniCatalystCelestial EventsCentaurus ACeresChandra X-Ray TelescopeChang’e 3 moon missionChang’e 4 moon missionCharonChina Space ProgramChinese Space ProgramChipmunksChristmasCitizen ScienceClimateClimate changecollaborationCollectionscollections moveColoradoCometComet 67PComet 67P/Churyumov–GerasimenkoComet Swift-TuttleConferenceConversations in Local Health ResearchCootiesCosmic InflationCrowdsourcingCuriosityCuriosity RoverCygnusCygnus SpacecraftDark EnergyDark MatterDatabaseDawnDawn missionDawn SpaecraftDDIGDenverdiscoveryDiscovery MissionsdonationDream ChaserDung BeetlesDwarf PlanetEagle NebulaEarthEarth and MoonEarth from SpaceEarth Observation SatellitesEclipse ViewingEducation and Collections Facilityeducation collectionsEinsteinEl NiñoEnceladusentomologyESAEuclid SpacecraftEuropaEuropean Space AgencyEvolutionExoMarsExoMars SpacecraftExoplanetExoplanet Search TechniquesExoplanetsExtinctionextremophilefieldfieldworkFirst Earthrisefolk artfoodGAIA MissionGalaxiesGalaxyGalaxy ClustersGanymedegem carvingGeneticsGRACE SpacecraftGravitational WavesGravity Recovery and Climate ExperimentGreenhouse GasesHabitable ZonehealthHeartHolidayHolidayshorticultural pestHot JupitersHubbleHubble Space TelescopehumanHuman SpaceflightHydrainsect collectioninsectsInsightInternational Space StationISSISS SightingsJason-2 (Spacecraft)JPLJWSTKeplerKepler Missionknow healthKonovalenkoKuiper Belt ObjectLaser CommunicationsLawrence Livermore National LaboratoryLepidoperaLibraryLiceLight PollutionLinear Etalon Imaging Spectral Array (LEISA)literatureLockheed Martin DenverLROLunar EclipseLunar Reconnaissance OrbiterMadagascarMarathon ValleyMars 2020Mars ExplorationMars OrbiterMars Reconnaissance OrbiterMars RoverMars RoversMars Science LabMars Science LaboratoryMars spacecraftMars WaterMAVENMemoryMesa VerdeMeteor ShowersMeteorsMilky WayMongoliaMoon Rise/SetMothsMount SharpMROMSLMurray ButtesNASANASA-JPLNASA-TVNeptuneNeuroscienceNeutron StarNew HorizonsNew Horizons spacecraftNight SkynomenclatureNSFNutritionOcean CurrentsOcean Surface Topography Mission (OSTM)Opportunity RoverOrbital SciencesOriginsOrionOrion spacecraftOSIRIS-RExPaleo DietpaleontologyparasitesPerseidsPersied Meteor ShowerPhilaePhobosPhotographyPlankPlutopoisonPolar bearsProgresspublishingPulsarQuasarRADRadio AstronomyRegolith ExplorerRelativityResource IdentificationRosettaRussiasamplesSaturnSaturn MoonsSaturn Ringsschoolscience on tapScientific visitorSecurityShrewsSierra NevadaSky calendarSky watchSmellSnowmassSolar SystemSoyuzSpace CommunicationsSpace ProbesSpace Stories of 2015Space TelescopesSpaceXspecimensSpectral InterpretationspidersSpitzer Space TelescopeStar ClusterStar TrekstarsSTEMStickney craterSunSuomi National Polar-orbiting PartnershipSuper EarthSuper MoonSupernovaTasteTeen Science Scholarsthe MoonTravelturtleUniverseUtopia PlanitiaVenusVery Large ArrayVestaVirgin GalacticVLAvolunteeringVulcanWebb Space TelescopeWeddingwormXMM-NewtonX-ray Multi-Mirror Missionzoology
^ Back to Top
comments powered by Disqus